引用本文
  • 王星云,左敏,肖克晶,刘婷.基于BP神经网络的食品安全抽检数据挖掘[J].食品科学技术学报,2016,34(6):85-90.    [点击复制]
  • WANG Xingyun,ZUO Min,XIAO Kejing,LIU Ting.Data Mining on Food Safety Sampling Inspection Data Based on BP Neural Network[J].Journal of Food Science and Technology,2016,34(6):85-90.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 431次   下载 173 本文二维码信息
码上扫一扫!
基于BP神经网络的食品安全抽检数据挖掘
王星云,左敏,肖克晶,刘婷
0
(北京工商大学 计算机与信息工程学院, 北京 100048;中国食品药品检定研究院, 北京 100050)
摘要:
数据挖掘技术在食品安全领域拥有巨大的应用价值和潜力。通过分析逆向传播(BP)神经网络算法,说明使用该方法的可行性和优越性。以抽检数据为对象,阐述了数据预处理过程,设计并实现了数据挖掘实验。最后利用挖掘结果进行食品检验结论预测,验证了方法的实用价值和指导意义。实验表明,基于BP神经网络的数据挖掘方法具有良好的过程健壮性和较高的结果准确性。通过预判不合格食品的出现,可以指导实际食品安全抽检工作,从而杜绝食品安全问题的发生。
关键词:  数据挖掘  食品安全  抽检数据  检验结论  BP神经网络
DOI:10.3969/j.issn.2095-6002.2016.06.015
投稿时间:2015-12-02
基金项目:“十二五”国家科技支撑计划项目(2015BAK36B04);北京市属高等学校青年拔尖人才培育计划项目(CIT&TCD201404029);北京工商大学创新团队计划项目(19008001074)。
Data Mining on Food Safety Sampling Inspection Data Based on BP Neural Network
WANG Xingyun,ZUO Min,XIAO Kejing,LIU Ting
(School of Computer and Information Engineering,Beijing Technology and Business University, Beijing 100048, China;National Institute for Food and Drug Control, Beijing 100050, China)
Abstract:
Data mining technology has great application values and potential in the food safety field. The feasibility and advantage of the BP neural network algorithm were explained. The process of data preprocessing was introduced, and the experiment of data mining was designed then realized, focusing on sampling inspection data. Finally, by taking advantage of the mining results, a prediction of food inspection conclusions was put forward which verified the method’s practical value and guiding significance. The experiment indicated that data mining method based on BP neural network has favorable robustness and good accuracy. The predictions of unqualified food’s appearance can lead food safety sampling and inspection work in practice, which can put an end to the occurrence of food safety problems.
Key words:  data mining  food safety  sampling inspection data  inspection conclusion  BP neural network