引用本文
  • 熊科,高思宇,柳佳芸,邓蕾,裴鹏钢,李秀婷.纳米球形聚电解质刷固定化酶合成及性质表征研究[J].食品科学技术学报,2019,37(2):28-35.    [点击复制]
  • XIONG Ke,GAO Siyu,LIU Jiayun,DENG Lei,PEI Penggang,LI Xiuting.Study on Synthesis and Characterization of Nano-Spherical Polyelectrolyte Brush Immobilized Enzyme[J].Journal of Food Science and Technology,2019,37(2):28-35.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 175次   下载 109 本文二维码信息
码上扫一扫!
纳米球形聚电解质刷固定化酶合成及性质表征研究
熊科,高思宇,柳佳芸,邓蕾,裴鹏钢,李秀婷
0
(北京工商大学 北京食品营养与人类健康高精尖创新中心/北京市食品添加剂工程技术研究中心/ 食品质量与安全北京实验室/北京市食品风味化学重点实验室, 北京 100048)
摘要:
为研究用光乳液聚合法合成以聚苯乙烯为核、接枝丙烯酸为单体的纳米球形聚电解质刷,采用透射电子显微镜、傅里叶红外光谱、核磁共振氢谱及激光粒度仪对微球结构进行表征,并以球刷为载体,对碱性蛋白酶进行固定化研究。结果表明:制备的纳米球形聚电解质刷载体平均粒径为80nm左右,尺寸均一,分散性良好。碱性蛋白酶优化固定化条件为缓冲液pH值9.0、固定化时间6h、酶液添加量1.2mg/mL。固定化酶与游离酶比较,最适pH值由游离酶的11.0变化为9.0,最适反应温度由游离酶的45℃提高到60℃,且热稳定性、酸碱稳定性均较游离酶有所提高。经纳米球形电解质刷固定化的碱性蛋白酶,酶的应用范围扩大,更有利于工业化生产。
关键词:  纳米球形聚电解质刷  碱性蛋白酶  固定化酶  游离酶  酶学性质
DOI:10.3969/j.issn.2095-6002.2019.02.005
投稿时间:2019-03-01
基金项目:
Study on Synthesis and Characterization of Nano-Spherical Polyelectrolyte Brush Immobilized Enzyme
XIONG Ke,GAO Siyu,LIU Jiayun,DENG Lei,PEI Penggang,LI Xiuting
(Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Engineering and Technology Research Center of Food Additives/Beijing Laboratory for Food Quality and Safety/Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University,Beijing 100048, China)
Abstract:
The nano-spherical polyelectrolyte brush with polystyrene as the core and grafted acrylic monomer was synthesized by photoemulsion polymerization. The microsphere structure was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and laser particle size analyzer. The immobilization of alkaline protease was studied by using a ball brush as a carrier.The results showed that the prepared nano-spherical polyelectrolyte brush carrier had an average particle size of about 80nm, uniform size, and good dispersion. The optimal immobilization conditions for alkaline protease were buffer pH 9.0, immobilization time 6 h, and enzyme solution addition 1.2mg/mL.Compared with the free enzyme, the optimum pH (changed from 11.0 to 9.0). The optimum reaction temperature was 60℃, which increased 15℃ compared with free enzymes. Both temperature stability and acid-base stability were higher than free enzymes. The application range of the enzyme is widened, which is more conducive to industrial production.
Key words:  nano-spherical polyelectrolyte brush  characterization  alkaline protease  immobilized enzyme  free enzyme  enzyme properties